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Convolution of Ultradistributions and Field Theory
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A general definition of convolution between two arbitrary tempered
ultradistributions is given. When one of the tempered ultradistributions is rapidly
decreasing this definition coincides with the definition of J. Sebastiao e Silva.
The product of two arbitrary distributions of exponential type is defined via
the convolution of its corresponding Fourier transforms. Several examples of
convolution of two tempered ultradistributions and singular products are given.
In particular, we reproduce the results obtained by A. Gonzales Dominguez and
A. Bredimas.

1. INTRODUCTION

In physics, it is sometimes necessary to work with functions that grow

exponentially in space or time. For those cases the Schwartz space of tempered

distributions [1] are too restrictive. On the other hand, the space of test
functions with bounded support allows the distributions to blow up more

rapidly than any exponential. In this sense they should be considered to be

too ª permissiveº for physical applications. What is needed is an equilibrium

between the necessities in x space and the possibility to work in the Fourier

transformed space ( p space) with propagators. From a mathematical point
of view the latter are analytic functionals defined on a space of entire test

functions.

We shall see that a point of equilibrium is achieved by working with

tempered ultradistributions (see below). They also have the advantage of

being representable by means of analytic functions. Thus in general they are

easier to work with and have interesting properties. One of those properties,
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as we shall see, is the possibility of defining a convolution product which is

general enough to be valid for any two tempered ultradistributions, and of

course, this automatically provides a definition for the product of distributions
of the exponential type in x space.

In Sections 2 and 3 we define the distributions of exponential type and

the Fourier-transformed tempered ultradistributions. Each of them is part of

a Gelfand triplet (or rigged Hilbert space [2, 3]) together with their respectives

duals and a ª middle termº Hilbert space. In Section 4 we give a general

expression for the convolution. We also state and prove some existence
teorems. In Section 5 we present several examples. Some of them imply

singular products. Finally, in section 6 we discuss of the principal results.

For the benefit of the reader an Appendix is added containing some formulas

utilized in the text.

2. DISTRIBUTIONS OF EXPONENTIAL TYPE

For the sake of the reader we present a brief description of the principal

properties of tempered ultradistributions.

The space H of test functions that ep ) x ) ) Dq f (x) ) is bounded for any p
and q is defined [4] by means of the countable set of norms:

| f Ã|9p 5 sup
0 # q # p,x

ep ) x ) ) Dq f Ã(x ) , p 5 0, 1, 2, . . . (2.1)

According to ref. 5, H is a _{Mp} space with

Mp(x) 5 e(p 2 1) ) x ) , p 5 1, 2, . . . (2.2)

_{e(p 2 1) ) x ) } satisfies condition (1) of Gelfand [2]. It is a countable Hilbert

and nuclear space:

_{e(p 2 1) ) x ) } 5 H 5 ù p 5 1

Hp (2.3)

where Hp is obtained by completing H with the norm induced by the sca-

lar product:

^ f Ã, c Ã& p 5 #
`

2 `

e2(p 2 1) ) x ) o
p

q 5 0

Dq f Ã(x) Dq c Ã(x) dx; p 5 1, 2, . . . (2.4)

If we take the usual scalar product

^ f Ã, c Ã& 5 #
`

2 `

f Ã(x) c Ã(x) (2.5)

then H, completed with (2.5), is the Hilbert space * of square-integrable

functions.
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The space of continuous linear functionals defined on H is the space

L ` of the distributions of exponential type [4].

The ª nested spaceº

(H, *, L ` ) (2.6)

is a Gelfand triplet (or a rigged Hilbert space [2, 3].

Any Gelfand triplet (!, *, !8) has the fundamental property that a
linear and symmetric operator on ! admitting an extension to a self-adjoint

operator in * has a complete set of generalized eigenfunctions in !8 with

real eigenvalues.

3. TEMPERED ULTRADISTRIBUTIONS

The Fourier transform of a function f ÃP H is

f (z) 5
1

2 p #
`

2 `

dx eizx f (x) (3.1)

f (z) is entire analytic and rapidly decreasing on straight lines parallel to the

real axis. We shall call h the set of all such functions:

h 5 ^{H } (3.2)

It is a ]{Mp} space [2, 3] countably normed and complete, with

Mp(z) 5 (1 1 ) z ) ) p (3.3)

h is also a nuclear space with norms

| f |pn sup
) Im(z) ) # n

(1 1 ) z ) ) p ) f (z) ) (3.4)

We can define the usual scalar product

^ f (z), c (z) & 5 #
`

2 `

f (z) c 1(z) dz 5 #
`

2 `

f Ã(x) c Ã(x) dx (3.5)

where

c 1(z) 5 #
`

2 `

dx e 2 izx c Ã(x)

By completing h with the norm induced by (3.5) we get the Hilbert space

of square-integrable functions.

The dual of h is the space 8 of tempered ultradistributions [4]. In other

words, a tempered ultradistribution is a continuous linear functional defined
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on the space h of entire functions rapidly decreasing on straight lines parallel

to the real axis.

The set (h, *, 8) is also a Gelfand triplet.
8 can also be characterized in the following way [4]: let ! be the space

of all functions F(z) such that:

I. F(z) is analytic for {z P #: ) Im(z) ) . p}.

II. F(z)/zp is bounded continuous in {z P #: ) Im(z) ) $ p}, where p 5
0, 1, 2, . . . depends on F(z).

Let P be the set of all z-dependent polynomials, z P #. Then 8 is the

quotient space:

III. 8 5 !/ P .

Due to these properties it is possible to represent any ultradistribution

as [4]

F( f ) 5 ^ F(z), f (z & 5 R G
dz F(z) f (z) (3.6)

where the path G runs parallel to the real axis from 2 ` to ` for Im(z) . r ,

r . p, and back from ` to 2 ` for Im(z) , 2 r , 2 r , 2 p. [ G lies outside

a horizontal band of width 2p containing all the singularities of F(z).]
Formula (3.6) will be our fundamental representation for a tempered

ultradistribution. Sometimes use will be made of ª Dirac’ s formulaº for ultra-

distributions [6]:

F(z) 5
1

2 p i #
`

2 `

dt
f(t)

t 2 z
(3.7)

where the ª densityº f(t) is such that

R G
dz F(z) f (z) 5 #

`

2 `

dt f(t) f (t) (3.8)

While F(z) is analytic on G , the density f(t) is in general singular, so that the
r.h.s. of (3.8) should be interpreted in the sense of distribution theory.

Another important property of the analytic representation is the fact that

on G , F(z) is bounded by a power of z [4]:

) F(z) ) # C ) z ) p (3.9)

where C and p depend on F.

The representation (3.6) makes evident that the addition of a polynomial

P(z) to F(z) does not alter the ultradistribution:
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R G
dz {F(z) 1 P(z)} f (z) 5 R G

dz F(z) f (z) 1 R G
dz P(z) f (z)

But

R G
dz P(z) f (z) 5 0

as P(z) f (z) is entire analytic (and rapidly decreasing), therefore

R G
dz {F(z) 1 P(z)} f (z) 5 R G

dz F(z) f (z) (3.10)

4. THE CONVOLUTION

If we try to define the convolution product by means of the natural

formula

(F * G){ f } 5 R G 1 R G 2

dk1 dk2 F(k1)G(k2) f (k1 1 k2) (4.1)

we soon discover that it is not always defined. The reason is simple. The

result of

R G
dk F(k) f (k 1 k8) 5 x (k8)

does not, in general, belong to h. However, if at least one of the ultradistribu-

tions F and G is rapidly decreasing (say G), then a convolution can be defined

[6] by

H(k) 5 #
`

2 `

dt f(t)G(k 2 t) (4.2)

where f(t) is the density associated to F(k) [cf. (3.7)].
In order to eliminate the test function from (4.1) use can be made of

the complex d -function, which is an ultradistribution (Cauchy’ s theorem)

d z8{ f } 5 2
1

2 p i R G
dz

f (z)

z 2 z8
5 f (z8) (4.3)

where the point z8 is enclosed by G (this procedure was used in ref. 7). We

can then write (4.1) as

(F * G){ f } 5 2
1

2 p i R G
dz R G 1 R G 2

dk1 dk2
F(k1)G(k2)

z 2 k1 2 k2

f (z) (4.4)

The path G must have
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) Im(z) ) . ) Im(k1) ) 1 ) Im(k2) ) (4.5)

in order to embrace the point k1 1 k2 (k1 P G 1, k2 P G 2).

Equation (4.4) leads to

F * G 5 H 8 2
1

2 p i R G 1 R G 2

dk1 dk2
F(k1)G(k2)

z 2 k1 2 k2

(4.6)

However, we do not expect (4.6) to define a tempered ultradistribution for
every pair F, G. Note that in (4.1) F and G operate on f (k), which is rapidly

decreasing, while in (4.6) they act on (z 2 k) 2 1, (k 5 k1 1 k2). Furthermore ,

due to (4.5) and the fact that G 1 and G 2 run outside a horizontal band containing

all the singularities of F and G, the integrand in (4.6) is analytic at every

point of the integration paths. Taking into account the property (3.9) of

tempered ultradistributions, we come to the conclusion that the integrations
in (4.6) have at most a tempered singularity for k ® ` . In order to control

this possible singularity we introduce a regulator (see ref. 8).

We define

H l (z) 5
i

2 p R G 1 R G 2

dk1 dk2

k l
1F(k1)k

l
2G(k2)

z 2 k1 2 k2

(4.7)

Now, if we have the bounds

) F(k1) ) # C1 ) k1 ) m, ) G(k2) ) # C2 ) k2 ) n (4.8)

Then (4.7) is convergent for

Re( l ) , 2 l 2 1; l 5 max{m, n} (4.9)

It is also analytic in the region (4.9) of the l plane, as the derivative with

respect to l merely multiplies by a logarithmic factor the integrand of (4.7)

without spoiling the convergence.

According to the method of ref. 8, H l can be analytically continued to

other parts of the l plane. In particular near the origin we have the Laurent
(or Taylor) expansion

H l 5 o
n

H(n)(z) l n (4.10)

where the sum might have terms with negative n. We now define the convolu-
tion product as the l -independent term of (4.10):

H(z) 5 H(0)(z) (4.11)

Note that the derivatives of H l (z) with respect to z can be obtained from

(4.7) by taking different powers of the denominator:
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d pH l (z)

dz p 5 ( 2 1) pp!
i

2 p R G 1 R G 2

dk1 dk2

k L
1 F(k1)k

L
2 G(k2)

(z 2 k1 2 k2)
p (4.12)

The convergence of (4.7) also ensures that of (4.12), and therefore also

ensures analyticity in z outside the horizontal band defined by (4.5). We will
now show that ) H l (z) ) is bonded by a power of ) z ) [cf. (3.9)].

To that aim we take

Im( l ) 5 0; l , 2 l 2 1; z 5 x 1 iy

ki 5 k i 6 i s i; s i . 0; dki 5 d k i

The integrals along G i can be expressed as integrals on d k i between 0 + ` .

Then we have

) H l ) 5
1

2 p Z R G 1 R G 2

dk1 dk2

k l
1F(k1)k

l
2G(k2)

z 2 k1 2 k2 Z
#

1

2 p R G 1 R G 2

sgn Im(k1) dk1 sgn Im(k2) dk2
) k1 ) l C1 ) k1 ) m ) k2 ) l C2 ) k2 ) n

) z 2 k1 2 k2 )

#
C1C2

2 p R G 1 R G 2

sgn Im(k1) dk1 sgn Im(k2) dk2 ) k1 ) l 1 m ) k2 ) l 1 n

5
8C1C2

p #
`

0 #
`

0

d k 1 d k 2 ( k 2
1 1 s 2

1)
( l 1 m)/2 ( k 2

2 1 s 2
2)

( l 1 n)/2 (4.13)

We now make the change of variables wi 5 k 2
i and obtain

(4.13) 5
2C1C2

p #
`

0

dw1 w 2 1/2
1 (w1 1 s 2

1)
( l 1 w)/2

3 #
`

0

dw2 w 2 1/2
2 (w2 1 s 2

2)
( l 1 m)/2 (4.14)

5
2C1C2

p
@ 1 1

2
, 2

l 1 m 1 1

2 2 @ 1 1

2
, 2

l 1 n 1 1

2 2
3 s ( l 1 m 1 1)/2

1 s ( l 1 n 1 1)/2
2 # C( l , m, n) ) z ) l 1 m 1 n 1 1 (4.15)

where @(x, y) is the Gauss beta function.

It is to be noted that if G(k) is a rapidly decreasing ultradistribution,

then H l (z) [Eq. (4.7)] coincides with H0(z):

H0(z) 5
i

2 p R G 1

dk1 F(k1) R G 2

dk2
G(k2)

z 2 k1 2 k2

(4.16)

In fact, near l 5 0 we have ( ) k ) . 1)
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) k l 2 1 ) # l (2 p 1 ) ln ) k|) ) k ) l (4.17)

H l 2 H0(z) 5
i

2 p R G 1

dk1 k l
1F (k1) R G 2

dk2 (k l
2 2 1)

G(k2)

z 2 k1 2 k2

1
i

2 p R G 1

dk1 (k l
1 2 1) F(k1) R G 2

dk2
G(k2)

z 2 k1 2 k2

(4.18)

In Eq. (4.18) the integrals are convergent, as G(k) and k l G(k) are both rapidly

decreasing. Furthermore, due to (4.17) the difference H l 2 H0 is proportional
to l . Therefore

lim
l ® 0

[H l 2 H0] 5 0 (4.19)

Again, when G(k) is rapidly decreasing, the convolution defined in ref. 6

H(z) 5 #
`

2 `

dt f(t)G(z 2 t) (4.20)

[where f(t) is given by (3.7), (3.8)] also coincides with (4.16). To show that
(4.16) implies (4.20), we use (3.8) in (4.16),

H0(z) 5
i

2 p #
`

2 `

dt f(t) R G 2

dk2
G(k2)

z 2 k1 2 k2

But if G(t) is the density associated to G(z), then

i

2 p R G 2

dk2
G(k2)

z 2 t 2 k2

5
1

2 p i #
`

2 `

dt2
g(t2)

t2 2 (z 2 t)
5 G(z 2 t)

i.e.,

H0(z) 5 H(z) (4.21)

5. EXAMPLES

In this section we are going to use definition (4.7) to evaluate the

convolution of tempered ultradistributions and indirectly the product of distri-

butions ( P L ` ; see Section 2).

The convolution theorem states that

^{ f1(x)f2(x)} 5
1

2 p
fÏ1(k) * fÏ2(k) (5.1)

where
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fÏ 5 ^{ f(x)}(k)

(i) As a first example we take the distribution x a
6 (ref. 8, Chapter 1,

§3.2; also ref. 9, Chapter 4), whose Fourier transform we write

xÏ a 6 5 ie 7 i1/2 a G ( a 1 1)k 2 a 2 1 Q [ 7 e (k)] (5.2)

where Q (x) is the Heaviside step function and e (k) 5 sgn Im(k).

The ultradistribution (5.2) has a line of singularities (a discontinuity)

on the real axis. Then the path G [cf. (2.6)] runs parallel to the real axis at

a distance as small as we please, and we have

^{x a
1 x b

1 } 5
i

4 p 2 R G 1

dk1 R G 2

dk2

xÏ a 1 xÏ b1

z 2 k1 2 k2

5 F i

4 p 2 ie 2 i( p /2) a G ( a 1 1)ie 2 i( p /2) b G ( b 1 1) G
3 R G 1

dk1 k 2 a 2 1
1 Q [ 2 e (k1) ] R G 2

dk2

k 2 b 2 1
2 Q [ 2 e (k2)]

z 2 k1 2 k2

The functions Q [ e (k1)] and Q [ e (k2)] eliminate the branches of G 1 and G 2,
respectively, on the lower half-plane of k1 and k2. By taking the remaining

integration arbitrarily close to the real axis, we get

^{x a
1 x b

1 } 5 2 [ ] R G 1

dk1 k 2 a 2 1
1 Q [ 2 e (k1)] #

`

2 `

dy
( y 2 i0) 2 b 2 1

z 2 k1 2 y

5 2 [ ] R G 1

dk1 k 2 a 2 1
1 Q [ 2 e (k1)] #

`

2 `

dy
y 2 b 2 1

1 1 e 2 i p ( 2 b 2 1) y 2 b 2 1
2

z 2 k1 2 y

5 2 [ ] R G 1

dk1 k 2 a 2 1
1 Q [ 2 e (k1)]

G ( 2 b ) G (1 1 b )

(z 2 k1)
b 1 1

3 [e 2 i p ( 2 b 2 1) 2 e 2 i p e (z)( 2 b 2 1)]

5 2i[ ] Q [ 2 e (z)] G ( 2 b ) G (1 1 b ) sin p ( 2 b 2 1)

3 # G 1

dk1

k 2 a 2 1
1

(z 2 k1)
b 1 1 Q [ 2 e (k1)]

5 2i p Q [ 2 e (z)][ ] #
`

2 `

dx
x 2 a 2 1

1 1 e 2 i p ( 2 a 2 1)x 2 a 2 1
2

(z 2 x) b 1 1

5 2i p Q [ 2 e (z)][ ]@ ( 2 a , b 1 a 1 1) [ei p e (z) a 2 ei p a ] z 2 a 2 b 2 1
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5 2i p { Q [ 2 e (z)]{2 [ ]
G ( 2 a ) G ( b 1 a 1 1)

G ( b 1 1)
2i sin p ( 2 a ) z 2 a 2 b 2 1

5 ie 2 i( p /2) ( a 1 b ) G ( a 1 b 1 1) z 2 a 2 b 2 1 Q [ 2 e (z)]

5 xÏ a 1 b
1 5 ^{x a 1 b

1 } 5 ^{x a
1 x b

1 } (5.3)

where use has been made of Eq. (A.4) of the Appendix.

For the evaluation of the convolution xÏ a 1 * xÏ b 2 the procedure is entirely
similar. However, in this case one of the integrations gives rise to a factor

Q [ 2 e (z)] and the other to a factor Q [ e (z)]. Thus, instead of { Q [ 2 e (z)]}2 5
Q [ 2 e (z)], we get Q [ 2 e (z)] Q [ e (z)] 5 0. That is,

xÏ a1 * xÏ b 2 [ 0, therefore x a
1 ? x b

2 5 0 (5.4)

(ii) As a second example we consider Dirac d -functions, whose Fourier
transform is

d Ï (m) 5 imkm e (k)

2
(5.5)

For the convolution (4.7) we have

d Ï (m) * d Ï (u) 5
i

4 p # G 1

dk1 imk l 1 m
1

e (k1)

2 # G 2

dk2

ink l 1 n
2 e (k2)

z 2 k1 2 k2

(in this case, the factors e 1 and e 2 change the sign of the integrations of the

lower half-plane of k1 and k2)

5
im 1 n 1 1

4 p # G 1

dk1 k l 1 m
1

e (k1)

2 #
`

2 `

dy
( y 1 i0) l 1 n 1 ( y 2 i0) l 1 n

z 2 k1 2 y

5
im 1 n 1 1

2 p # G 1

dk1 k l 1 m
1

e (k1)

2 #
`

2 `

dy
y l 1 n

1 1 cos p ( l 1 n)y l 1 n
2

z 2 k1 2 y

5
im 1 n 1 1

2 p # G 1

dk1 k l 1 m
1

e (k1)

2

G ( l 1 n 1 1) G ( 2 l 2 n)

z 2 k1

3 [cos p ( l 1 n) 2 e 2 i p e (z)( l 1 n)]

5 2
i p e (z)

2 p
im 1 n 1 1 #

`

2 `

dx
x l 1 m

1 1 cos p ( l 1 m)x l 1 m
2

(z 2 x) 2 l 2 n

3
e (z)

2
im 1 n G ( l 1 m 1 1) G ( 2 2 l 2 m 2 n 2 1)

G ( 2 l 2 n)
z2 l 1 m 1 n 1 1
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5 [e 2 i p e (z)( l 1 m 1 1) 1 cos p ( l 1 m)]

5
[ e (z)]2

2
im 1 n 1 1 G ( l 1 m 1 1) G ( 2 2 l 2 m 2 n 2 1)

G ( 2 l 2 n)

3 sin p ( l 1 m)z2 l 1 m 1 n 1 1

®
l ® 0

0 5 d Ï (m) * d Ï (n) (5.6)

There are two reasons for this null result. The G functions have simple poles

when their arguments are negative integers (or zero). So the quotient of G
functions has a finite limit. However, they are multiplied by sin p ( l 1 m) l ® 0

® 0.
Furthermore, [ e (z)]2 5 1, and

z2 l 1 m 1 n 1 1 ®
l ® 0

zm 1 n 1 1

Then we can put (C 5 arbitrary constant)

d Ï (m) * d Ï (n) 5 Czm 1 n 1 1 (5.7)

But due to property III of Section 3, the ultradistribution (5.7) is equivalent

to zero.

We have then

d (m)(x) ? d (n)(x) 5 0 (5.8)

This result was obtained in ref. 10 and can be summarized in general as

follows:
The product of two distributions with point support is zero.

(iii) We can combine examples (i) and (ii) to find the product d (m) ?
xÏ a1 :

1

2 p
d Ï (m) * xÏ a 1 5 F i

4 p 2 imie 2 i( p /2) a G ( a 1 1) G
3 R G 1

dk1 k l 1 m
1

e (k1)

2 R G 2

dk2

k 2 a 2 1
2 Q [ 2 e (k2)]

z 2 k1 2 k2

5 2 p i Q [ 2 e (z)][ ] #
`

2 `

dx
x l 1 m

1 1 cos p ( l 1 m)x l 1 m
2

(z 2 x) a 1 1

5 2 p i Q [ 2 e (z)][ ]
G ( l 1 m 1 1) G ( a 2 l 2 m)

G ( a 1 1)
z l 1 m 2 a

3 [e 2 i p e (z)( l 1 m 1 1) 1 cos p ( l 1 m)]
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5 2 p i Q [ 2 e (z)] 1 2
im

4 p 2 e 2 i( p /2) a 2
3 G ( l 1 m 1 1) G ( a 2 l 2 m)

3 i sin p ( l 1 m) e (z)z l 1 m 2 a ®
l ® 0

0 (5.9)

if a is not an integer s such that s # m.

When 0 # a 5 s # m

1

2 p
d Ï (m) * xÏ s

1 5 2 2i p Q [ 2 e (z)]
im

4 p 2 ( 2 i)si e (z)z l 1 m 2 s

3
G ( l 1 m 1 1)

G ( l 1 m 1 1 2 s)

sin p ( l 1 m)

sin p ( l 1 m 2 s)

5
im

2
( 2 i)s G ( l 1 m 1 1)

G ( l 1 m 1 1 2 s)

sin p ( l 1 m)

sin p ( l 1 m 2 s)
Q [ 2 e (z)] e (z) z l 1 m 2 s

®
l ® 0

( 2 1)s im 2 s

2

m!

(m 2 s)!

e (z)

2
zm 2 s

5
( 2 1)s

2

m!

(m 2 s)!
d Ï (m 2 s) (5.10)

In particular, for s 5 0 we get

d (m)(x) Q (x) 5
1

2
d (m)(x) (5.11)

If a 5 s 5 negative number 5 2 n we must be careful, as x a
1 has a pole for

a 5 2 n. We shall deal with this case by replacing a 5 2 n 2 l in (5.9)

G ( a 2 l 2 m) ® G ( 2 2 l 2 m 2 n)

5 2
p

G (2 l 1 m 1 n 1 1) sin p (2 l 1 m 1 n)

and by taking the limit l ® 0:

1

2 p
d Ï (m) * x 2 n

1 5
im 1 n

2

m!

(m 1 n)!

( 2 1)n

2

e (z)

2
zm 1 n 5

( 2 1)n

4

m!

(m 1 n)!
d Ï (m 1 n)

(5.12)

In Eqs. (5.10) and (5.12) we used
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Q [ 2 e (z)] e (z) 5 2 Q [ 2 e (z)] 5
1

2
( e (z) 2 1) 5

e (z)

2
2

1

2

Q [ 2 e (z)] e (z) zs 5
e (z)

2
zs 2

1

2
zs ’

e (z)

2
zs

since Czs is equivalent to zero [cf. (5.7)].

Similar expressions originate from the use of xÆa2 in (5.9). In particular,

if we use

xÆ2 n 5 xÆ2 n1 1 ( 2 1)nxÆ2 n2 (5.13)

then we easily find

1

2 p
d Æ(m) * xÆ2 u 5

( 2 1)n

2

m!

(m 1 n)!
d Æ(m 1 n) (5.14)

The case m 5 0, n 5 1 was first treated in ref. 11. For m 5 n, Eq. (5.14)
agrees with ref. 12.

(iv) To illustrate the use of (4.10) and (4.11), we are now examine an

interesting example. Let us take the ultradistribution (5.13), which is found

to be

xÆ2 n 5
( 2 i)n p

(n 2 1)! F 2
1

p i
ln(k) 1

e (k)

2 G kn 2 1 (5.15)

The convolution product is now

xÆ2 m * xÆ2 n

5 2
( 2 i)m 1 n 1 1

4 (m 2 4)!(n 2 1)! R G 1 R G 2

dk1 dk2

3 H 2
1

p 2

k l 1 m 2 1
1 ln(k1) k l 1 n 2 1

2 ln(k2)

z 2 k1 2 k2

2
1

2 p i

k l 1 m 2 1
1 ln (k1)k

l 1 n 2 1
2 e (k2)

z 2 k1 2 k2

1 2
1

2 p i

k l 1 m 2 1
1 e (k1) k l 1 n 2 1

2 ln(k2)

z 2 k1 2 k2

1
1

4

k l 1 m 2 1
1 e (k1)k

l 1 n 2 1
2 e (k2)

z 2 k1 2 k2 J
(5.16)

The last term of (5.16) is null according to example (ii). We analyze now

the first term. We use the identity

k l 1 m 2 1 ln(k) 5 D a k a 1 m 2 1; D a 5
-

- a Z a 5 l
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Then we have

i

4 p 2

( 2 i)m 1 n

(m 2 1)!(n 2 1)! R G 1 R G 2

dk1 dk2

k l 1 m 2 1
1 ln(k1)k

l 1 n 2 1
2 ln(k2)

z 2 k1 2 k2

5 F i

4 p 2

( 2 1)m 1 n

(m 2 1)!(n 2 1)! G R G 1

dk1 D a k a 1 m 2 1 R G 2

dk2

D b k b 1 n 2 1
2 ln(k2)

z 2 k1 2 k2

5 [ ]D a D b R G 1

dk1

k a 1 m 2 1
1

(z 2 k1)
1 2 b 2 n

3 2i sin p ( b 1 n 2 1) G ( b 1 n) G (1 2 b 2 n)

5 2 p i[ ] D a D b R G 1

dk1

k a 1 m 2 1
1

(z 2 k1)
1 2 b 2 n

5 2 p i[ ]D a D b
G ( a 1 m) G (1 2 a 2 m b 2 n)

G (1 2 b 2 n)

3 2i sin p ( a 1 m 2 1) z a 1 b 1 m 1 n 2 1

5 4 p [ ] D a D b
G ( a 1 m) G ( b 1 n) sin p a sin p b
G ( a 1 b 1 n 1 m) sin p ( a 1 b )

z a 1 b 1 m 1 n 2 1

5 2
1

p
( 2 i)m 1 n 2 1

(m 1 n 2 1)!
D a D b H sin p a sin p b

sin p ( a 1 b )
z a 1 b 1 m 1 n 2 1 J (5.17)

where we have used the fact that any derivative D a or D b acting on a G
function will lead to a null result in (5.17) through the substitutions a 5 l ,

b 5 l , l ® 0. Now the derivatives in (5.17) give rise essentially to two

types of terms. The two derivatives acting on the trigonometric functions

give rise to a pole term (in l ). If one takes a derivative of the trigonometric

functions and a derivative of z a 1 b , a constant term is obtained. For the term

D a D b z a 1 b the limit l ® 0 of the trigonometric functions is zero. Thus we get

(5.17) 5 2
( 2 i)m 1 n 2 1

(m 1 n 2 1)!
zm 1 n 2 1 H 1

4

1

l
z2 l 1

1

2
ln(z) J

The second and third terms of (5.16) have the same contribution, and can

be evaluated by a similar procedure. This contribution is

1

8 p
( 2 i)m 1 n 2 2

(m 2 1)!(n 2 1)! R G 1 R G 2

dk1 dk2

k l 1 m 2 1
1 ln(k1)k

l 1 n 2 1
2 e (k2)

z 2 k1 2 k2

5
( 2 i)m 1 n

(m 1 n 2 1)!

p
4

e (z)zm 1 n 2 1 (5.18)
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According to (5.17) and (5.18), we finally get

(5.16) 5
( 2 i)m 1 n

(m 1 n 2 1)!
zm 1 n 2 1H i

4

1

l
z2 l 1

i

2
ln(z) 1

p
2

e (z) J
5

( 2 i)m 1 n

(m 1 n 2 1)!
zm 1 n 2 1H i

4

1

l
[1 1 2 l ln(z)] 1

i

2
ln(z) 1

p
2

e (z) J
2

( 2 i)m 1 n p
(m 1 n 2 1)!

zm 1 n 2 1H 2
1

p i
ln(z) 1

1

2
e (z) J (5.19)

The l -independent term is recognized to be xÆ2 m 2 n [cf. (5.15)]. The pole term

is equivalent to zero according to property III of Section 3.

(v) Finally, we give a physical example. We consider a massless scalar

( l /4!) f 4(x) theory in four dimensions. For this theory we shall evaluate the

self-energy Green function.

The propagator for the field f (x) is [9]

D (x) 5 [ 2 4 p 2(u2 2 i0)] 2 1 (5.20)

According to Eqs. (A.5)±(A.10) of the Appendix we can write

(u2 2 i0) 2 1 5 (2x0)
2 1[(x0 2 r) 2 1 1 (x0 1 r) 2 1]

1 (2r) 2 1[ d (x0 2 r) 1 d (x0 1 r)] 1 C d (x0 2 r) d (x0 1 r)
(5.21)

where C is an arbitrary constant appearing in the definition of some distribu-

tions (ref. 9, Sections 8.8, 8.9; see also Appendix).
And using the results of (i)±(iv), it is easy show that

(u2 2 i0) 2 1(u2 2 i0) 2 1 5 (u2 2 i0) 2 2

Then, we have for the self-energy

S (x) 5 ( D (x))2 5
1

16 p 4 (u2 2 i0) 2 2 (5.22)

where (u2 2 i0) 2 2 is defined in ref. 9, Sections 8.8, 8.9.

6. DISCUSSION

When we use the perturbative development in quantum field theory, we

have to deal with products of distributions in configuration space or with

convolutions in the Fourier-transformed p space. Unfortunately, products or

convolutions (of distributions) are in general ill-defined quantities. However,
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in physical applications one introduces some ª regularizationº scheme which

allows us to give sense to divergent integrals. Among these procedures is

the dimensional regularization method [14, 15], which essentially consists
in the separation of the volume element d n p into an angular factor d V and

a radial factor p n 2 1 dp. First the angular integration is carried out and then

the number of dimensions n is taken as a free parameter. It can be adjusted

to give a convergent integral which is an analytic function of n .

Our formula (4.7) is similar to the expression one obtains with dimen-

sional regularization. However, the parameter l is completely independent
of any dimensional into interpretation.

All ultradistributions provide integrands [in (4.7)] that are analytic func-

tions along the integration path. The parameter l enables us to control the

possible tempered asymptotic behavior [cf. Eq. (3.9)]. The existence of a

region of analyticity for l and a subsequent continuation to the point of

interest [8] defines the convolution product.
Those properties show that tempered ultradistributions provide an appro-

priate framework for applications to physics. Furthermore, they can ª absorbº

arbitrary polynomials, thanks to Eq. (3.10), a property that is interesting for

renormalization theory [See, for example, the elimination of the pole term

in (5.19).] Consequently, we began this paper with a summary of the main
characteristics of tempered ultradistributions and their Fourier-transformed

distributions of the exponential type.

APPENDIX. DEFINITIONS

From ref. 8 we quote the formula

@( l , m ) 5 #
1/2

0

dx x l 2 1 F (1 2 x) m 2 1 2 o
k 2 1

r 5 0
( 2 1)r G ( m )xr

r! G ( m 2 r) G
1 #

1

1/2

dx (1 2 x) m 2 1 F x l 2 1 2 o
s 2 1

r 5 0
( 2 1)r G ( l )(1 2 x)r

r! G ( l 2 r) G
1 o

k 2 1

r 5 0

( 2 1)r G ( m )

2r 1 l r! G ( m 2 r)(r 1 l )
1 o

s 2 1

r 5 0

( 2 1)r G ( l )

2r 1 m r! G ( l 2 r)(r 1 m )
(A.1)

valid for Re l . 2 k, Rc m . 2 s, where k and s are positive integers.
From ref. 13 we get

@( l , m ) 5
G ( l ) G ( m )

G ( l 1 m )
(A.2)

G ( l ) 5 #
`

0

dt t l 2 1e 2 t (A.3)
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G ( l ) G (1 2 l ) 5
p

sin p l
(A.4)

From ref. 9 we have

d (m)(u2) 5 d (m) (x0 1 r)(x0 2 r) 2 m 2 1 sgn(x0 2 r)

5 1 d (m)(x0 2 r)(x0 1 r) 2 m 2 1 sgn(x0 1 r) (A.5)

where

u2 5 x2
0 2 x2

1 2 ? ? ? 2 x2
n 2 1 (A.6)

r 2 5 x2
1 1 x2

2 1 ? ? ? 1 x2
n 2 1 (A.7)

(u2 6 i0) 2 m 5 u 2 2m 6
( 2 1)m

(m 2 1)!
i p d (m 2 1)(u2) (A.8)

x 2 m sgn(x) 5
( 2 1)m 2 1

(m 2 1)!
{ ) x ) 2 1}(m 2 1) (A.9)

) x ) 2 1 5 {sgn(x) ln ) x ) }8 1 C d (x) (A.10)

where C is an arbitrary constant.
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